Machine Learning and Artificial Intelligence: Part 2

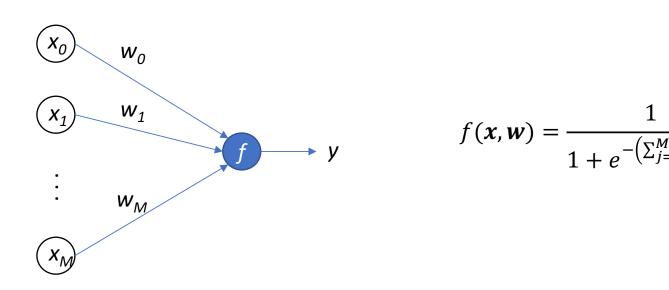
Neural Networks and Deep Learning

George Bezerra
Director of Data Science, TripAdvisor

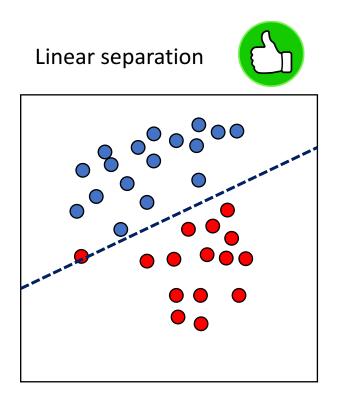
SFI Complex Systems Summer School 2018

Logistic regression revisited

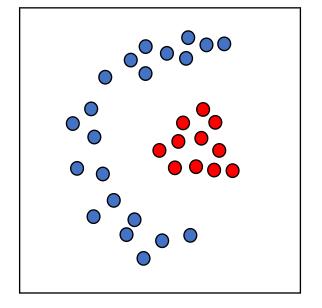
Graphical representation:



The LR decision boundary is linear

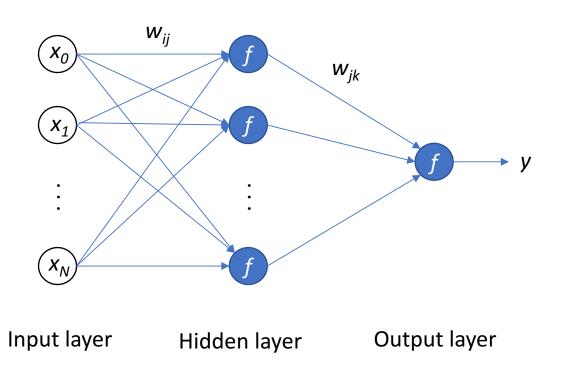


Nonlinear separation

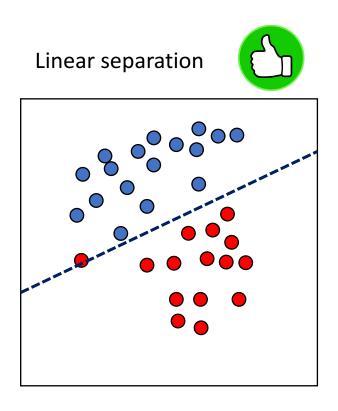


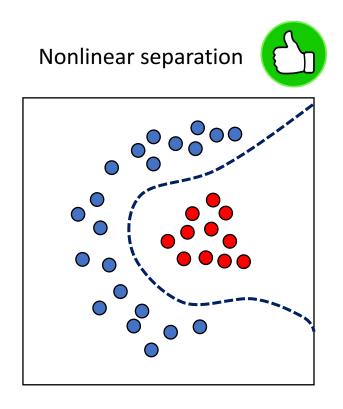
Multi-layer perceptron (MLP)

Stacking logistic regressions together



The MLP decision boundary is nonlinear



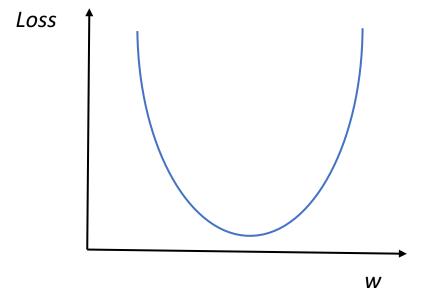


Loss function:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_i(\mathbf{w})$$

Iterative minimization:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \alpha \, \nabla \mathcal{L}(\mathbf{w}(t))$$

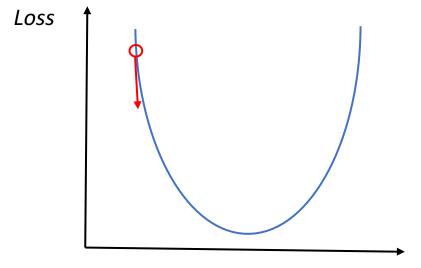


Loss function:

$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{i}(\boldsymbol{w})$$

Iterative minimization:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \alpha \, \nabla \mathcal{L}(\mathbf{w}(t))$$

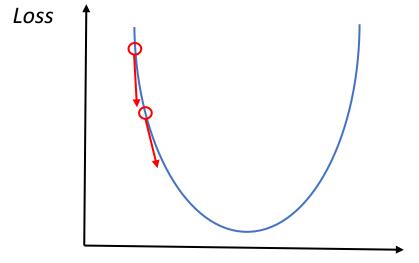


Loss function:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_i(\mathbf{w})$$

Iterative minimization:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \alpha \, \nabla \mathcal{L}(\mathbf{w}(t))$$

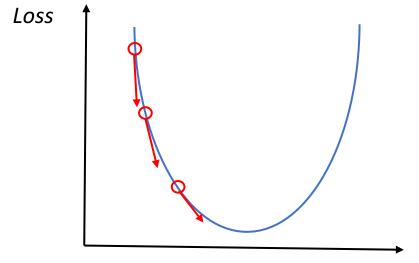


Loss function:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_i(\mathbf{w})$$

Iterative minimization:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \alpha \, \nabla \mathcal{L}(\mathbf{w}(t))$$

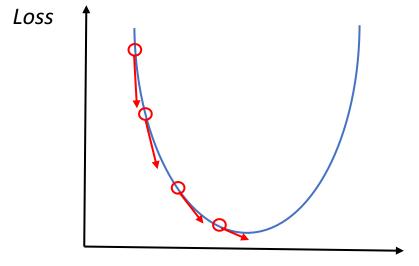


Loss function:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_i(\mathbf{w})$$

Iterative minimization:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \alpha \, \nabla \mathcal{L}(\mathbf{w}(t))$$



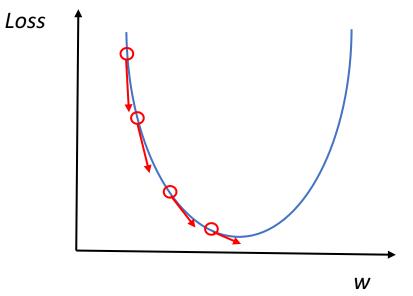
Loss function:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_i(\mathbf{w})$$

Iterative minimization:

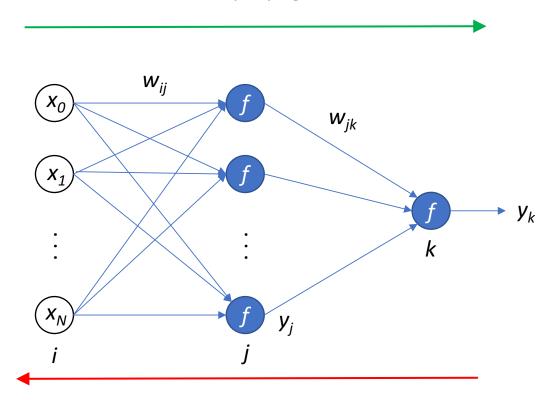
$$\mathbf{w}(t+1) = \mathbf{w}(t) - \alpha \, \nabla \mathcal{L}(\mathbf{w}(t))$$

Learning rate



Backpropagation algorithm

Forward propagation



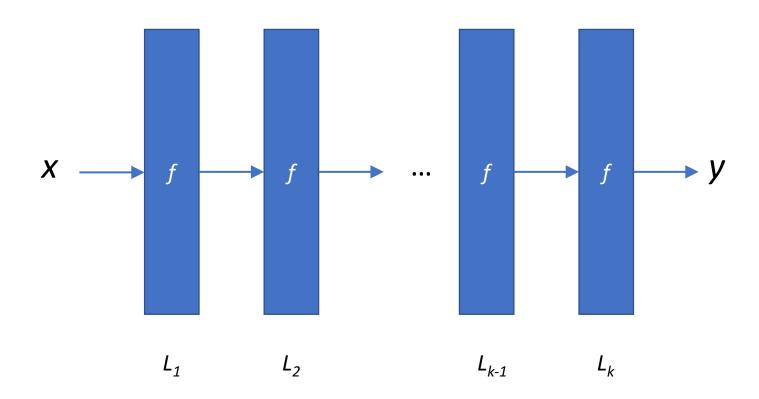
Chain rule:

$$\frac{\partial \mathcal{L}}{\partial w_{jk}} = \frac{\partial \mathcal{L}}{\partial y_k} \cdot \frac{\partial y_k}{\partial w_{jk}}$$

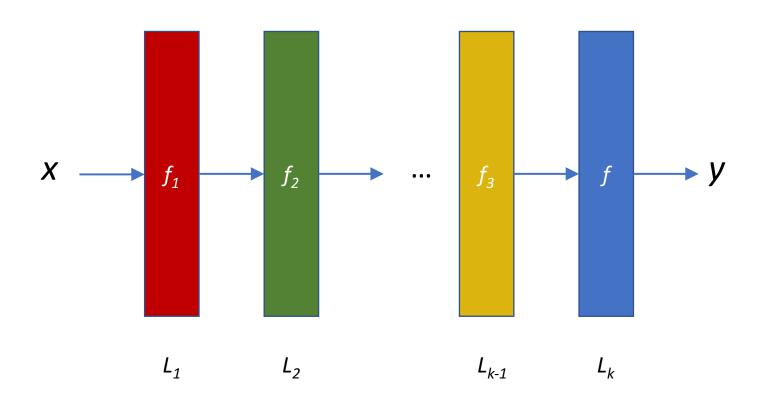
$$\frac{\partial \mathcal{L}}{\partial w_{ij}} = \frac{\partial \mathcal{L}}{\partial y_k} \cdot \frac{\partial y_k}{\partial y_j} \cdot \frac{\partial y_j}{\partial w_{ij}}$$

Backpropagation

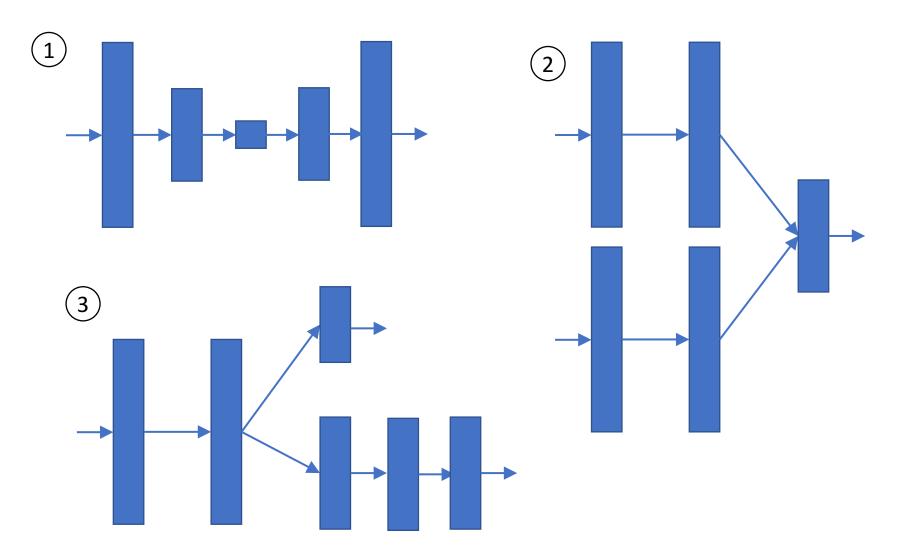
Deep learning



Deep learning



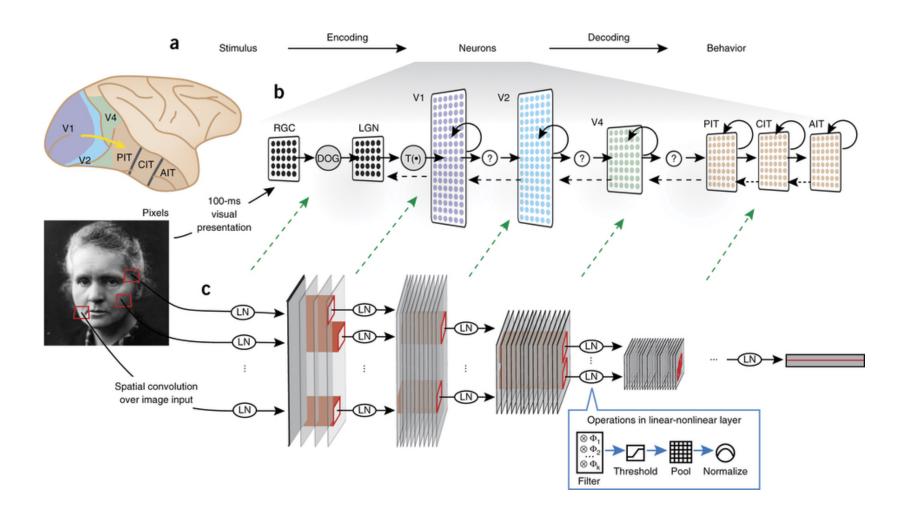
Deep learning



Why deep learning now?

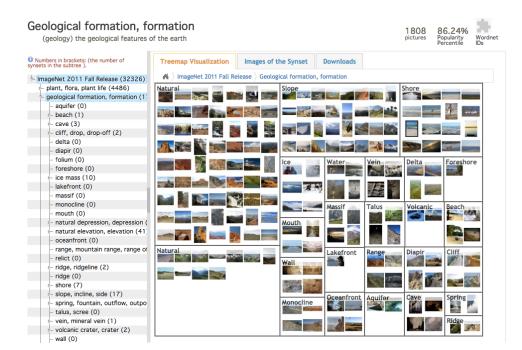
- Massive datasets
- More compute power (Faster CPUs + GPUs)
- Better understanding of regularization techniques
- Open source deep learning frameworks: PyTorch, Keras, Tensorflow, Theano, MXNet, Caffe, etc.

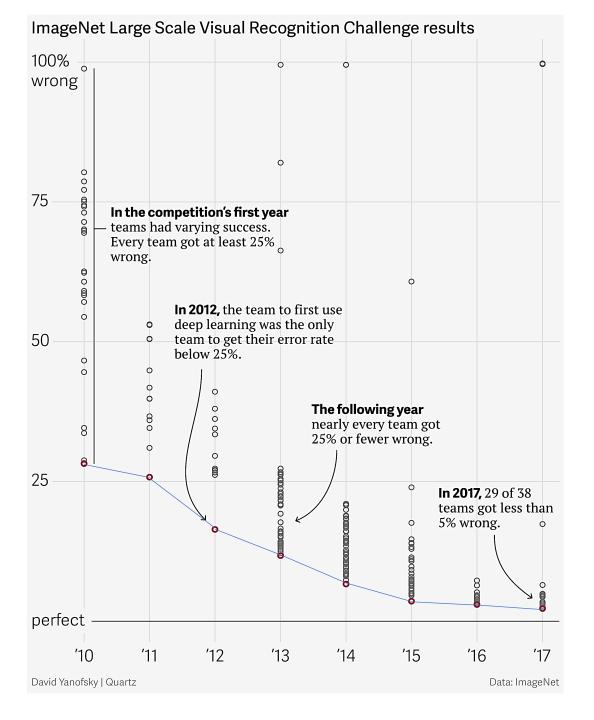
Convolutional Neural Networks



Imagenet Challenge

- 1M images
- 1000 categories





Convolution

Image (binary)

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Neuron (convolutional filter)

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

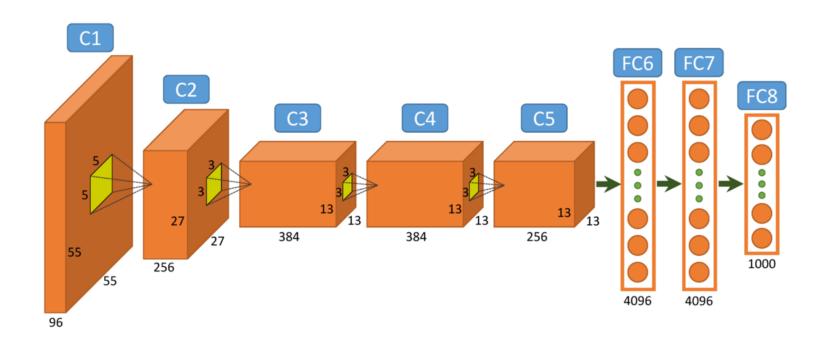
4	

Convolved Feature

Image source:

http://deeplearning.stanford.edu/wiki/index.php/Feature_ex traction_using_convolution

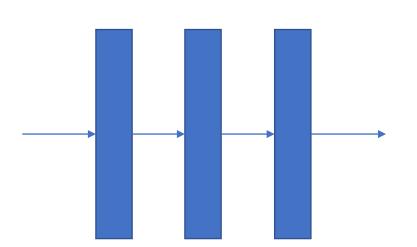
AlexNet



Recurrent Neural Networks

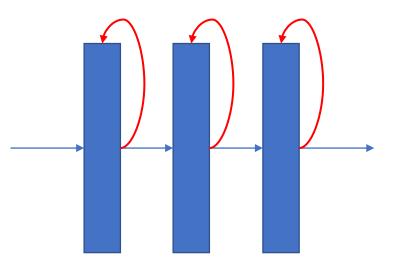
Feed-forward network

$$\mathbf{y} = f(W\mathbf{x})$$



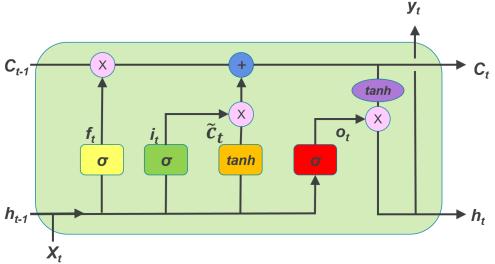
Recurrent network

$$\boldsymbol{y}_t = f(W\boldsymbol{x}_t + U\boldsymbol{y}_{t-1})$$



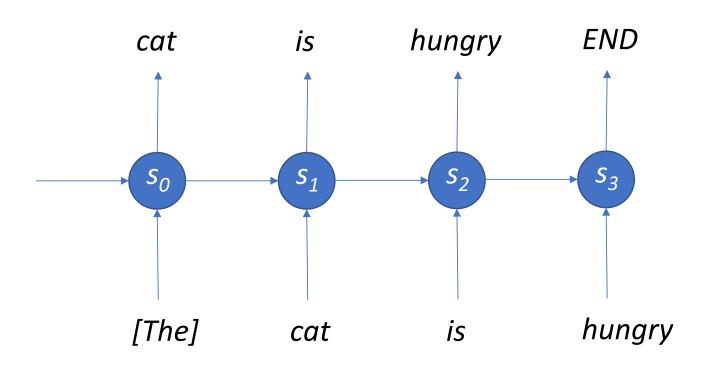
Long-short term memory (LSTM)

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$



Text generation with LSTMs

• Language model: $P(w_1, ..., w_m) = \prod_{i=1}^{m} P(w_i | w_1, ..., w_{i-1})$



Text generation examples

Shakespeare:

[KING LEAR:] O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

(Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

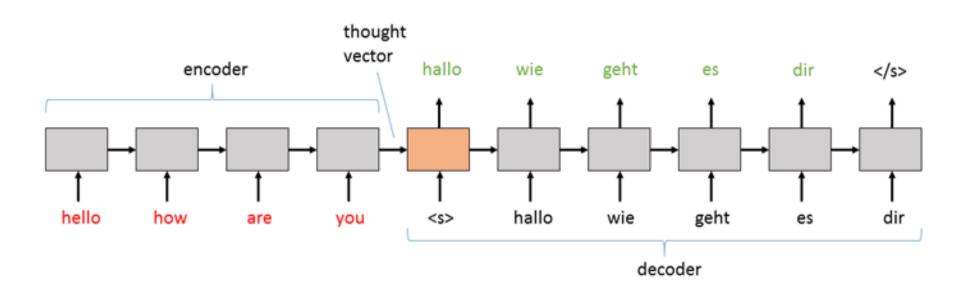
Trump tweet bot:

[I, Donald J. Trump, president of the United]States of The Apprentice and the world in the world that we have to be a great trade deal and the people of the World Trade Center in the world that we have to be a great person to be a great problem.

(Source: https://towardsdatascience.com/yet-another-text-generation-project-5cfb59b26255)

Neural Machine Translation

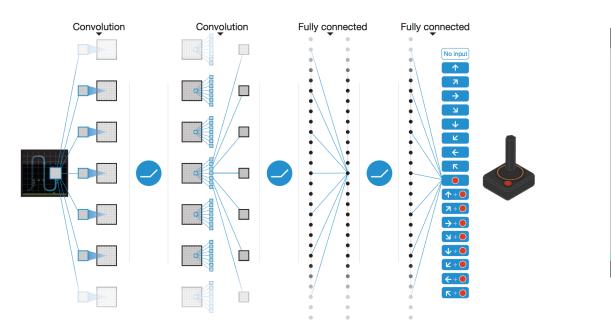
Sequence-to-sequence models



Deep reinforcement learning

Deep Q-learning (Google Deepmind)

Network structure



Atari game

Killer robots!



Boston Dynamics

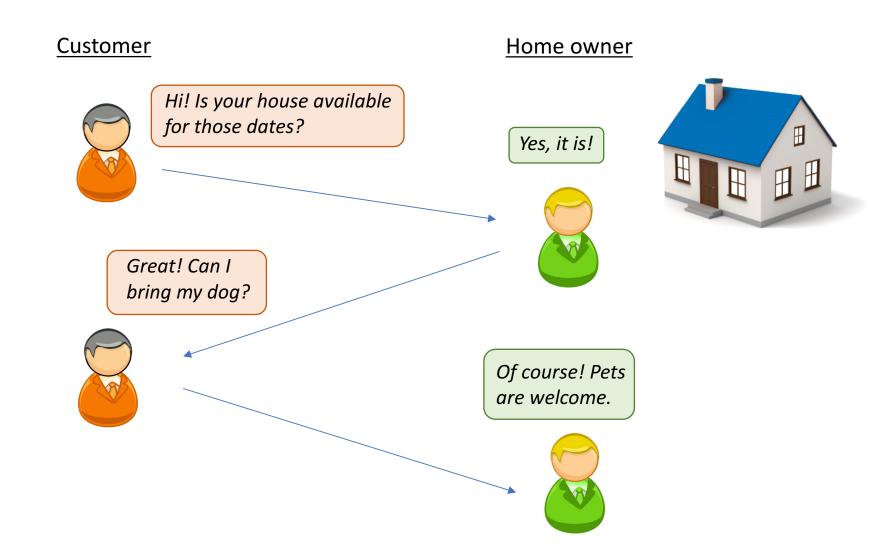
The real danger of "AI"

Algorithmic bias:

"when a computer system behaves in ways that reflects the implicit values of humans involved in that data collection, selection, or use." – Wikipedia

Increased danger with widespread automation

Short-term home rentals business



Fraud detection with deep learning

Customer: "Hi, I'd like to stay at you place, it's perfect! Do you accept pets?"

Owner 1: "We'd love to have you stay with us. Yes, we do accept pets."

Fraud detection with deep learning

Customer: "Hi, I'd like to stay at you place, it's perfect! Do you accept pets?"

Owner 1: "We'd love to have you stay with us. Yes, we do accept pets."

Owner 2: "Please contact me at badowner@gmail.com"

Fraud detection with deep learning

Customer: "Hi, I'd like to stay at you place, it's perfect! Do you accept pets?"

Owner 1: "We'd love to have you stay with us. Yes, we do accept pets."

Owner 2: "Please contact me at badowner@gmail.com"

Owner 3: "Find me at *****, I can make you a better deal."

More examples

- "Search for 'Paradise house' on google and you'll find our website."
- "Call me at five five five two seven six three."

- "Send a message to janelle at hotmail dot com"
- "please c-o-n-t-a-c-t me on mmartin-a-t-g-m-a-i-l"

Naïve approach: Regular expressions

- Regular expressions for phone numbers, websites, email, keywords, etc.
 - Websites:
 (?:(?:(?:https?|ftps?)://)|(?:www?|m|ftp)\.)(?:[a-z0-9-]+\.)+[a-z]+(?::[0-9]+)?(?:(/|\?).*)?
 - *Emails*: (?:[a-z0-9._%+-]| +dot +)+(?: *@ *| +at +)(?:[a-z0-9.-]| +dot +)+(?:\.| +dot +)[a-z]{2,6}
- Over 2,000 regexes
- Manual process
- Generates many false positives

Using a model: bag-of-words + regex

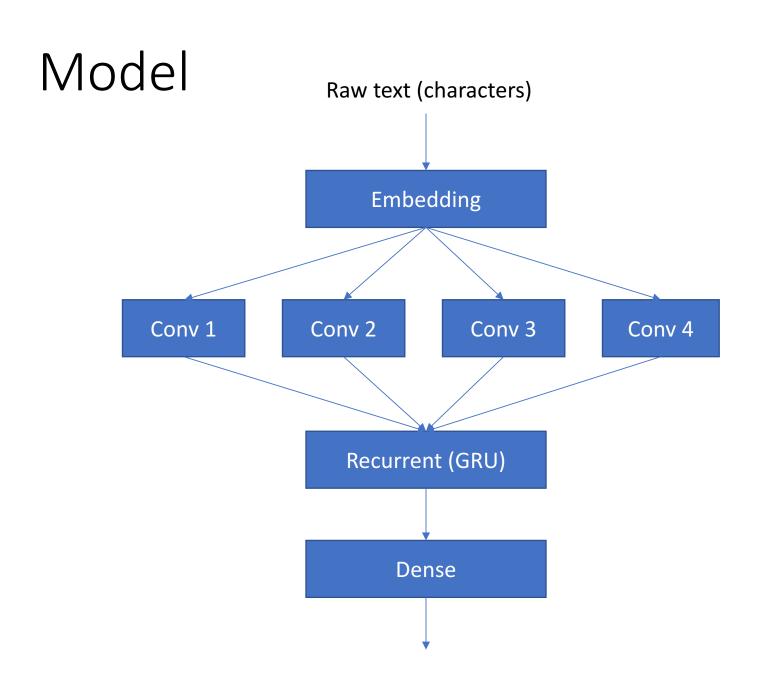
- Logistic regression classifier using bag of words
- Uses existing regular expressions as features (1 if there is a match, 0 otherwise)
- Reduces false positives by 2-4x!
- However...
 - Regular expressions are easy to fool
 - Cannot learn new patterns on its own (requires new regexes)
 - BOW misses character-level features
 - Does not capture context

Examples where traditional approaches fail

- Please call me on *407*410*9301
- u can 91 reach me 49 on this 27 number anytime 86 you want 54. I hope you understand the message
- I can confirm the availability and the price. I kindly invite you to proceed with your booking. Please do not hesitate to contact me if you need further information. Thank you. (False positive)
- Please note the owner address contact him directly: ernesto@gardener.
 c o m
- you may r. ea ch us at नौ तीन नौ शून्य आठ सात आठ एक शून्य दो

Deep learning solution

- Learns the features (at the character level)
- Interprets contextual meaning (through recurrent layers)
- Captures high-level relationships and patterns
- Goals:
 - Eliminate the need for regular expressions
 - Improve accuracy
 - Catch more circumvention



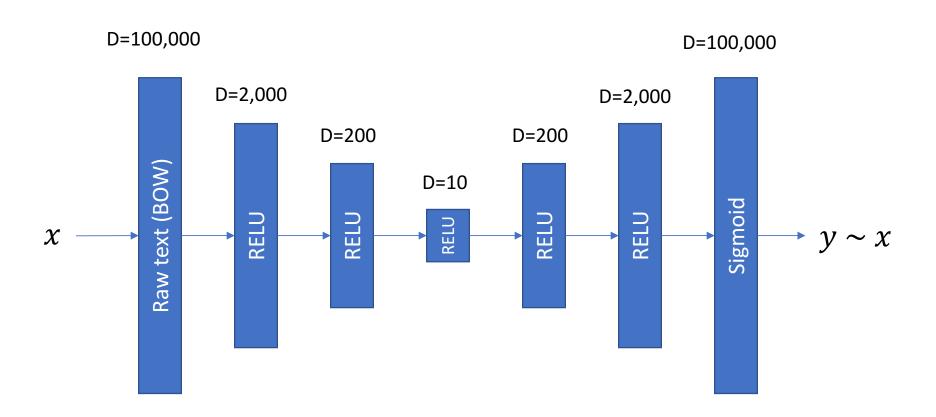
Results

- Please call me on *407*412*9391
 - Proba: 0.998
- u can 90 reach me 49 on this 17 number anytime 86 you want 54. I hope you understand the message
 - Proba: 0.710
- I can confirm the availability and the price. I kindly invite you to proceed with your booking. Please do not hesitate to contact me if you need further information. Thank you. (False positive)
 - Proba: 0.016
- Please note the owner address contact him directly: alvarez@gardener. c o m
 - Proba: 0.97
- you may r. ea ch us at नौ नौ तीन शून्य आठ सात एक आठ शून्य दो
 - Proba: 0.99

Recap (part 2)

- Neural networks are powerful non-linear methods for solving supervised problems.
- Deep learning takes neural networks to the next level: more layers, activation functions, architectures
- Convolutional neural networks changed the game on image classification tasks.
- Recurrent neural networks enable a wide variety of natural language processing tasks.
- Killer robots are not the real danger of AI; algorithmic bias is.

Deep auto-encoder



Al as a complex system

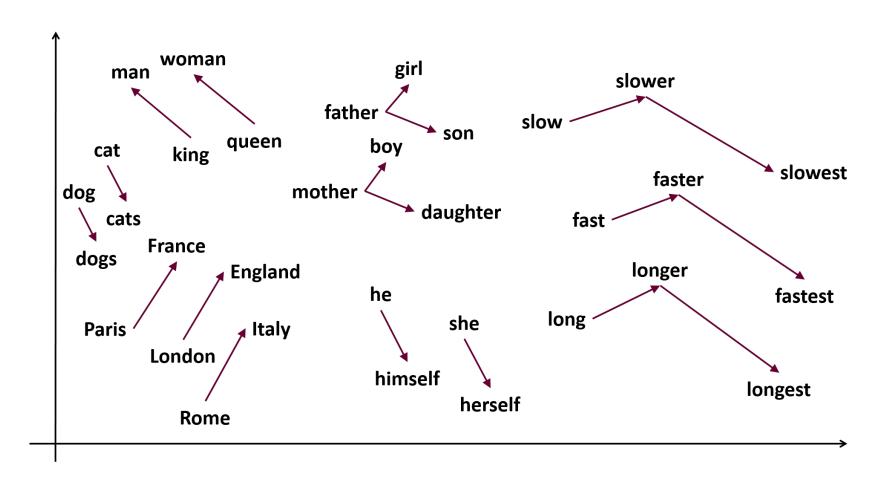
- Backpropagation
- Non-linear dynamics
- Fractal (hierarchical-modular) network structure
- Domain-specific
- Emergence

Word Embeddings

Finding dense representations for sparse high-dimensional data

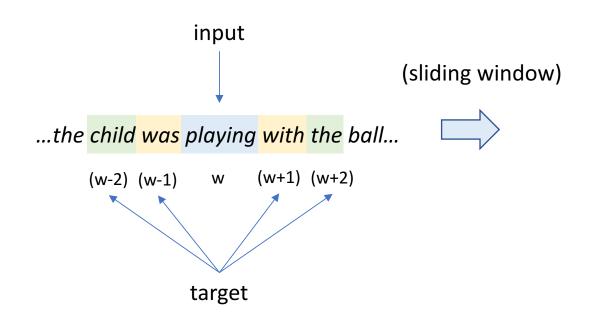
Car 0 0 0 1 0 0 0 0 Bag of words Bike (100,000 dimensions) 0 0 0 0 1 0 Car 0.1 0.5 -0.3 -0.7 0.4 0.2 **Embedding** (100 dimensions) 0.1 0.6 -0.3 -0.7 0.2 Bike

Word Embeddings in 2D

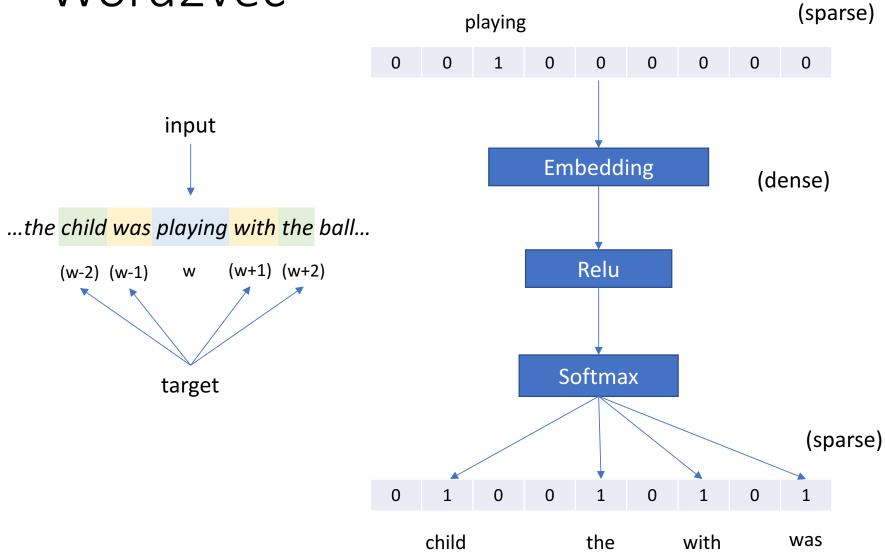


Word2vec

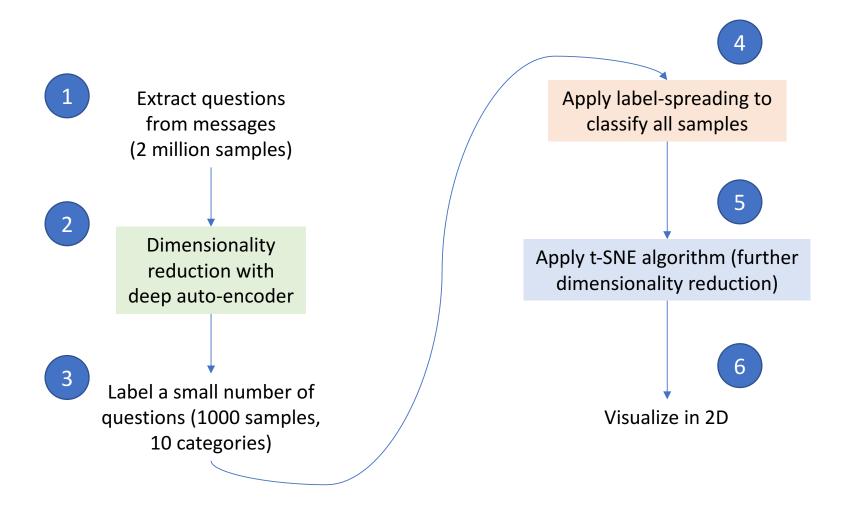
 Assumption: words that appear in the same context are similar to each other



Word2vec



Topic modeling with auto-encoders + semi-supervised learning



AlexNet

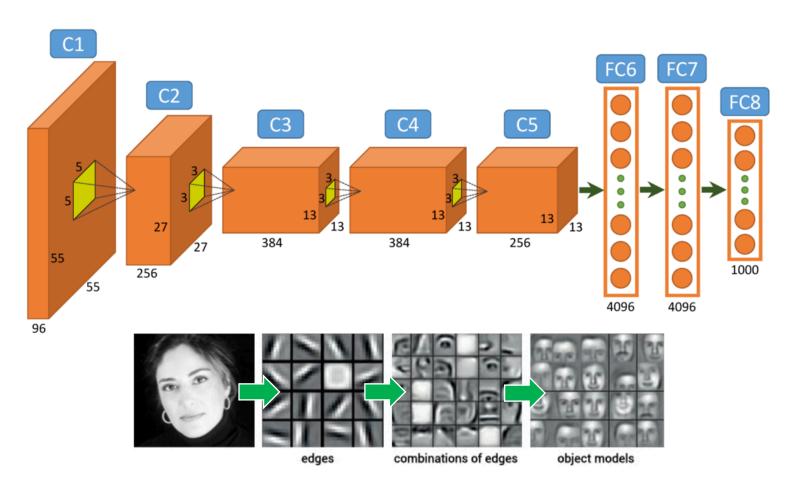
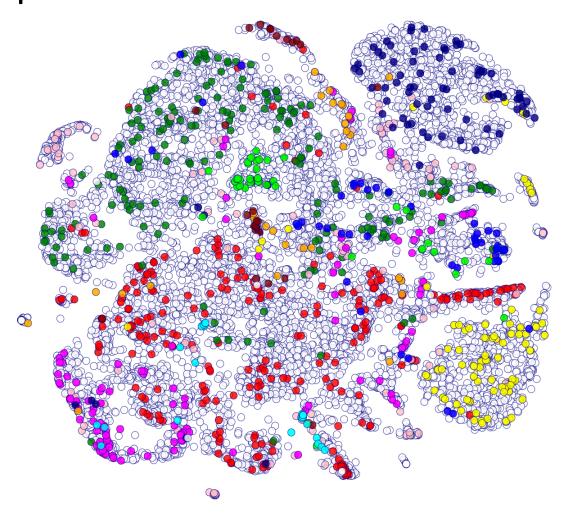
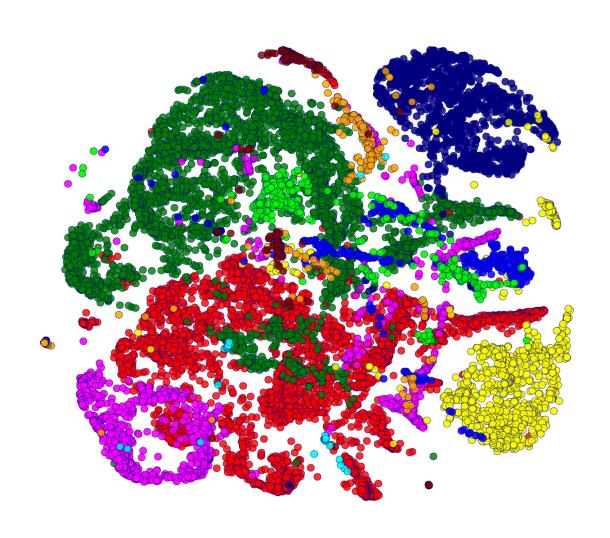


Image source: https://www.saagie.com/blog/object-detection-part1

Auto-encoder + 1000 labeled samples

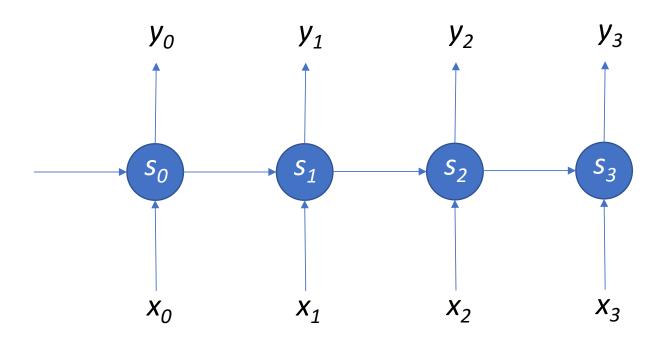


Auto-coder + Label Spreading

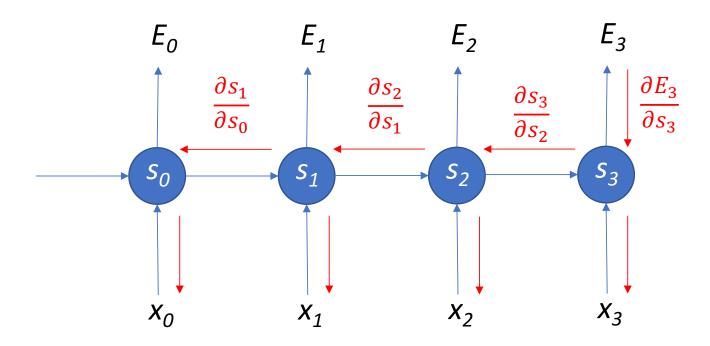


Recurrent Neural Networks

"Unrolled" network

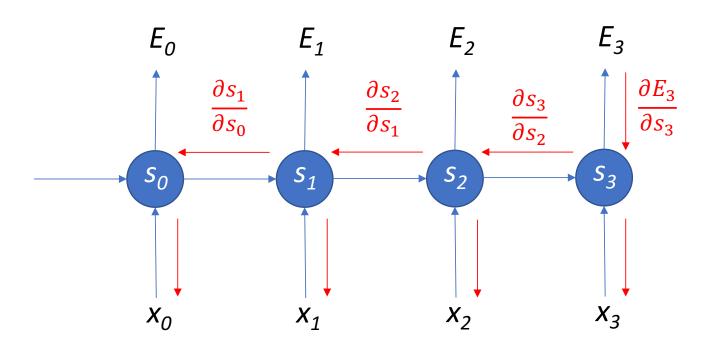


Backpropagation Through Time (BPTT)



Backpropagation Through Time (BPTT)

Vanishing gradient problem!



Structured vs Unstructured data

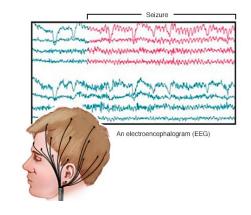
Structured

<u></u>	III Results 🛅 Messages						
	Id	Address	Date	Id	Name	Date	
1	1	Bangalore	2011-06-09 15:23:37.873	1	shirsendu	2011-06-09 15:17:58.130	
2	1	Bangalore	2011-06-09 15:23:37.873	1	shirsendu	2011-06-09 15:19:30.087	
3	1	Bangalore	2011-06-09 15:23:37.873	2	Sarnali	2011-06-09 15:19:30.087	
4	1	Bangalore	2011-06-09 15:23:37.873	3	Mrinal	2011-06-09 15:19:30.087	
5	2	Bangkok	2011-06-09 15:23:37.890	1	shirsendu	2011-06-09 15:17:58.130	
6	2	Bangkok	2011-06-09 15:23:37.890	1	shirsendu	2011-06-09 15:19:30.087	
7	2	Bangkok	2011-06-09 15:23:37.890	2	Sarnali	2011-06-09 15:19:30.087	
8	2	Bangkok	2011-06-09 15:23:37.890	3	Mrinal	2011-06-09 15:19:30.087	
9	3	CAlcutta	2011-06-09 15:23:37.890	1	shirsendu	2011-06-09 15:17:58.130	
10	3	CAlcutta	2011-06-09 15:23:37.890	1	shirsendu	2011-06-09 15:19:30.087	
11	3	CAlcutta	2011-06-09 15:23:37.890	2	Sarnali	2011-06-09 15:19:30.087	
12	3	CAlcutta	2011-06-09 15:23:37.890	3	Mrinal	2011-06-09 15:19:30.087	

	PROCLIB.PAYLIST Table						
IdNum	Gender	Jobcode	Salary	Birth	Hired		
1639	F	TA1	42260	26JUN70	28JAN91		
1065	М	ME3	38090	26JAN54	07JAN92		
1400	М	ME1	29769	05NOV67	16OCT90		
1561	М		36514	30NOV63	070CT87		
1221	F	FA3		22SEP63	040CT94		

Unstructured

Dies ist ein Blindtext. An ihm lässt sich vieles über die Schrift ablesen, in der er gesetzt ist. Auf den ersten Blick wird der Grauwert der Schriftfläche sichtbar. Dann kann man prüfen, wie gut die Schrift zu lesen ist und wie sie auf den Leser wirkt. Dies ist ein Blindtext. An ihm lässt sich vieles über die Schrift ablesen, in der er gesetzt ist. Auf den ersten Blick wird der Grauwert der Schriftfläche sichtbar. Dann kann man prüfen, wie gut die Schrift zu lesen ist und wie sie auf den Leser wirkt.



Structured vs Unstructured data

Structured

<u> </u>	Results Messages Messages						
	Id	Address	Date	Id	Name	Date	
1	1	Bangalore	2011-06-09 15:23:37.873	1	shirsendu	2011-06-09 15:17:58.130	
2	1	Bangalore	2011-06-09 15:23:37.873	1	shirsendu	2011-06-09 15:19:30.087	
3	1	Bangalore	2011-06-09 15:23:37.873	2	Sarnali	2011-06-09 15:19:30.087	
4	1	Bangalore	2011-06-09 15:23:37.873	3	Mrinal	2011-06-09 15:19:30.087	
5	2	Bangkok	2011-06-09 15:23:37.890	1	shirsendu	2011-06-09 15:17:58.130	
6	2	Bangkok	2011-06-09 15:23:37.890	1	shirsendu	2011-06-09 15:19:30.087	
7	2	Bangkok	2011-06-09 15:23:37.890	2	Sarnali	2011-06-09 15:19:30.087	
8	2	Bangkok	2011-06-09 15:23:37.890	3	Mrinal	2011-06-09 15:19:30.087	
9	3	CAlcutta	2011-06-09 15:23:37.890	1	shirsendu	2011-06-09 15:17:58.130	
10	3	CAlcutta	2011-06-09 15:23:37.890	1	shirsendu	2011-06-09 15:19:30.087	
11	3	CAlcutta	2011-06-09 15:23:37.890	2	Sarnali	2011-06-09 15:19:30.087	
12	3	CAlcutta	2011-06-09 15:23:37.890	3	Mrinal	2011-06-09 15:19:30.087	

Unstructured

Dies ist ein Blindtext. An ihm lässt sich vieles über die Schrift ablesen, in der er gesetzt ist. Auf den ersten Blick wird der Grauwert der Schriftfläche sichtbar. Dann kann man prüfen, wie gut die Schrift zu lesen ist und wie sie auf den Leser wirkt. Dies ist ein Blindtext. An ihm lässt sich vieles über die Schrift ablesen, in der er gesetzt ist. Auf den ersten Blick wird der Grauwert der Schriftfläche sichtbar. Dann kann man prüfen, wie gut die Schrift zu lesen ist und wie sie auf den Leser wirkt.

