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Information in Processes ... _
Entropy Growth for Stationary Stochastic Processes: Pr(,S)

Block Entropy:

H(L) = H(Pr — ) Pr(s*)log, Pr(s")
steA

Monotonic increasing: H(L) > H(L — 1)
Adding a random variable cannot decrease entropy:

H(Sla‘SQa .- °7SL) < H(Sla‘927 . '7SL7‘9L+1)

No measurements, no information: H(0) = 0
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Information in Processes ...
Entropy Growth for Stationary Stochastic Processes ...
Block Entropy ...

Llog, |A| LH(1)
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Information in Processes ...
Entropy Growth for Stationary Stochastic Processes ...

Block Entropy ...
Example: Fair Coin

Pr(sk) = QLL H(L)
H(L) = L .
0

0 L
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Information in Processes ...
Entropy Growth for Stationary Stochastic Processes ...

Block Entropy ...
Example: Biased Coin  Pr(s*) = p™(1 —p)* ™"

H(L) = LH(p)
H(L)

For any IID process:
H(L) = LH(S)
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Information in Processes ...
Entropy Growth for Stationary Stochastic Processes ...

Block Entropy ... Pr(0) = Pr(1) = 5
Example: Period-2 Process Pr(01) = Pr(10) = %
..0101010101...  Pr(101) = Pr(010) = }
Pr(s™) =0, otherwise
H(L) H(l):H(Q):H(Lzl):l
log,(P)-

Period-P Process:
H(L > P) = log,(P)

0 |
0 P
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Information in Processes ...

Entropy Rates for Stationary Stochastic Processes:
Entropy per symbol is given by the Source Entropy Rate:

H(L) o< Lh
h, = lim H(L) :
H L— o0 L

(When limits exists.)

| 0 L
Interpretations:

Asymptotic growth rate of entropy
Irreducible randomness of process
Average description length (per symbol) of process

Use: Typical sequences have probability: Pr(s”) ~ 275"

(Shannon-MacMillian-Breiman Theorem)

Complexity Lecture |: Processes and information (CSSS 201 |); Jim Crutchfield

Wednesday, June 22, 2011



Information in Processes ...

Entropy Rates for Stationary Stochastic Processes ...

Length-L Estimate of Entropy Rate:

AN

hu(L) = H(L) — H(L — 1) —
hu(L) = H(sp|sy- sp-1) H(L)

Boundary condition:

h,,(0) = log, |A| : no measurements, all things possible
hu(1) = H(1)

P

Monotonic decreasing: h, (L) < EM(L — 1)

Conditioning cannot increase entropy:
H(sp|s1---sp—1) < H(spls2 - sp—1) = H(sp-1]s1---SL-2)
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Information in Processes ...

Entropy Rates for Stationary Stochastic Processes:
Entropy rate ...

AN

~ L —
h,= lim h,(L)= lim H(so|s )= H(so|s)

L— o0 L— o0

Interpretations:
Uncertainty in next measurement, given past
A measure of unpredictability
Asymptotic slope of block entropy

Alternate entropy rate definitions agree:

AN

h, = hy,
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Information in Processes ...
Entropy Rate for a Markov chain: {V,T'}

h,= lim h,(L)

L—o0

lim H(vp|vi---vp_1)
L—o0

lim H(UL‘UL_l)

L—o0

Assuming asymptotic state distribution:
Process in statistical equilibrium
Process running for a long time
Forgotten it’s initial distribution

Closed-form:

h, = — va(oo) Z Ty 1logs Ty

veV v'ev
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Information in Processes ...

Entropy Rate for Markov chains ...

1
Examples: 2
(1) Fair Coin: %M%
1
2

h, = 1 bit per symbol

Lop
(2) Biased Coin: meq —

p
h,, = H(p) bits per symbol
1
(3) Period-2 Process: @_@
1

h,, = 0 bits per symbol
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Information in Processes ...
Entropy Rate for Unifilar Hidden Markov Chain:

Internal: {V,T'}
Observed:{T(%) : s € A}

Closed-form for entropy rate:

== pe(00) 3 D Ty log, T

veV scAv' eV

Due to unifilarity:
Observed sequences are (effectively) unique paths in UHMC
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Information in Processes ...

Entropy Rate for Unifilar Hidden Markov Chain ...

Example:Why are modems noisy?

Recall previous prefix code example

Distribution: P(a)
p(b)

p(c)
(d)

=

Codebook: C'(a
C'(b
C(c
C(d)

)
)
)

O~ Ol | N

] ] 1
L. A

H(X) = 1.75 bits

R(C') = 1.75 bits per message

What is entropy rate (per output bit) of encoded stream!?
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Information in Processes ...

Entropy Rate for Deterministic Hidden Markov Chain ...
Example:Why are modems noisy?

How often are codewords generated!?

Clc) =110 C(d) =111

Encoding (output of channel) is a hidden Markov chain:
Leaves connect to top tree node
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Information in Processes ...

Entropy Rate for Deterministic Hidden Markov Chain ...
Example:Why are modems noisy?

|dentify tree nodes with states of a hidden Markov chain

Clc) =110 C(d) = 111
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Information in Processes ...

Entropy Rate for Deterministic Hidden Markov Chain ...

Example:Why are modems noisy?
Equivalent hidden Markov chain

119
2
T = % 0 2
1 0 0
_ (4 2 1
pv(c0) = (pa,pB,pc) = (5, %, =)
It’s unifilar:
= 0 0 0 2 0
7O = (I o o TW=(0 0 1
% 0 0 = 0 0
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Information in Processes ...

Entropy Rate for Deterministic Hidden Markov Chain ...

Example:Why are modems noisy?

Calculate entropy rate directly:

D IE) D) ST
veV scAv' eV
=2.14+2-14+2-1
4 4
— 1 bit

Encoding provides full utilization of binary channel.

Modem output sounds noisy!

Complexity Lecture |: Processes and information (CSSS 201 |); Jim Crutchfield

Wednesday, June 22, 2011

17



Information in Processes ...
Entropy Rate for Deterministic Hidden Markov Chain ...

Example:Why are modems noisy?

Compare:
4-symbol source is redundant:

R = log, |A| — H(X)
=2 —1.75 = 0.25 bits

Does not use all of 4-symbol channel.

Prefix code mapped 4-symbol, suboptimal source
into a new source that uses all available capacity.

Modems do the same: Maximize use of capacity by sending a
code stream that is as close to maximum entropy as possible.
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Information in Processes ...

Entropy Rate for Nonunifilar Hidden Markov Chain:

Internal: {V,T'}
Observed: {T*) : s € A}

Entropy rate: No closed-form!

hy =Y Ty Y T logy T\

veV scAv' eV

Upper and Lower Bounds:

H(SL|ViS1 -+ Si_1) < hu(L) < H(SL|S1 -+ Si_1)

Unrealistic for inference: Must know about internal states.

Unrealistic for analysis: Simulate chain, do empirical estimate.

Entropy rate! But there exists a way ... stay tuned!
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Information in Processes ...

Motivation:

Previous: Measures of randomness of information source
Block entropy H (L)
Entropy rate h,,

End point of next lectures:
Measures of memory & information storage

Big Picture:

Complementary properties of a source.
Need both: Measures of randomness and structure.

Complexity Lecture |: Processes and information (CSSS 201 |); Jim Crutchfield

Wednesday, June 22, 2011

20



Information in Processes ...

How random?

Block entropy growth: H(L).
If L is large enough, we see rate of increase of H (L),
which is the entropy rate:

h, = lim (H(L)— H(L - 1))

L— o0
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Information in Processes ...

How random ...

Fair and Biased Coins:

16
14 F H(L): Fair Coin
12 L H(L): Biased Coin, p=.7 -------
10
)
=1 8

o NN OB~ O
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Information in Processes ...

How random ...

Golden Mean Process:

4.5
4t
3.5 |
3 1
5 25
T 2
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Information in Processes ...

How random ...

Period-16 Process:

4.5
4
3.5
3
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Information in Processes ...

How random ...

RRXOR Process:

14
12

10

0 2 4 6 8 10
L
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Information in Processes ...

How random ...

How large must L be to see the intrinsic randomness /v, ?
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Information in Processes ...

Entropy Convergence:
Length-L entropy rate estimate: N

h.(L) = AH(L) fog, A —
h,(L)=H(L)— H(L—1)

H(1)
Monotonic decreasing:
fp (L) < (L —1) -
Process appears less random 0

as account for longer correlations

Entropy (rate) Loss is an Information Gain:

hy(L) = D(Pr(s™)|| Pr(s" "))
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Information in Processes ...
Redundancy in Processes:

R — 10g2 ‘./4‘ — h,UJ

Anatomy of Measurement:

(| )
Information >R Redundancy
in single <
measurement | _| /
Intrinsic
\ }h,u Randomness
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Information in Processes ...
Redundancy in Processes ...

R = lim D(Pr(s¥)||U(s%))

L— o0

Redundancy in words: Redundancy per symbol:
R(L)=H(L) — h, L r(L) =R(L) —R(L—1)=h,(L) — h,

H(L)
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Information in Processes ...
Predictability Gain: 0

A*H(L) = h, (L) — h,(L—1)

Boundary condition:

2 — _
- log, Al

Rate at which unpredictability is lost
NH(L)

Properties:

(1) H(L)Curvature:

A*H(L)=H(L)—-2H(L—-1)—- H(L—2)
(2) H (L)Concavity:

A*H(L) <0
(3) \AQH(L)| >> 1 = Lth measurement significant
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Information in Processes ...

Predictability Gain ...

Predictability Gai
Golden Mean Process: os. 'Te IC .a Il )' aln.

A?H(2) = —0.2516 bits |

. -0.1-f
ASH(L)-

-0.15-}
-0.2-F

-0.25-} W

-0.3-

Second measurement is informative:
00 restriction observed
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Information in Processes ...
Entropy Hierarchy:

Take derivatives:

(1) Block entropy: H (L)
(2) Entropy rate: h, (L) = AH(L)
(3) Predictability gain: Ah, (L) = A*H(L)

Next take integrals!
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