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Complexity Lecture 1: Processes and information (CSSS 2011); Jim Crutchfield

Block Entropy:

H(L) = H(Pr(sL)) = −

∑

sL∈A

Pr(sL) log2 Pr(sL)

Monotonic increasing: H(L) ≥ H(L − 1)

Adding a random variable cannot decrease entropy:

No measurements, no information: H(0) = 0

Entropy Growth for Stationary Stochastic Processes: Pr(
↔

S )

H(S1, S2, . . . , SL) ≤ H(S1, S2, . . . , SL, SL+1)
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Block Entropy ...
Entropy Growth for Stationary Stochastic Processes ...

H(L)

L

L log2 |A| LH(1)

0
0
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Information in Processes ...
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Block Entropy ...
	
 Example: Fair Coin

Entropy Growth for Stationary Stochastic Processes ...

H(L) = L

Pr(sL) =
1

2L
H(L)

L
0

0

L
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Block Entropy ...
	
 Example: Biased Coin

Entropy Growth for Stationary Stochastic Processes ...

Pr(sL) = p
n(1 − p)L−n

H(L) = LH(p)
H(L)

L0
0

For any IID process:

H(L) = LH(S1)
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Block Entropy ...
	
 Example: Period-2 Process

Entropy Growth for Stationary Stochastic Processes ...
Pr(0) = Pr(1) = 1

2

Pr(01) = Pr(10) = 1

2

Pr(101) = Pr(010) = 1

2

Pr(sL) = 0, otherwise

L

H(L)

0
0

P

log2(P )

H(1) = H(2) = H(L ≥ 1) = 1

Period-P Process:
H(L ≥ P ) = log2(P )

. . . 0101010101 . . . ...
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Entropy Rates for Stationary Stochastic Processes:
    Entropy per symbol is given by the Source Entropy Rate:

hµ = lim
L→∞

H(L)

L

(When limits exists.)

Interpretations:
	
 Asymptotic growth rate of entropy
	
 Irreducible randomness of process
	
 Average description length (per symbol) of process

Use: Typical sequences have probability: 
(Shannon-MacMillian-Breiman Theorem)

Pr(sL) ≈ 2−L·hµ

L0
0

H(L) ∝ Lhµ
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Entropy Rates for Stationary Stochastic Processes ...

Length-L Estimate of Entropy Rate:

ĥµ(L) = H(sL|s1 · · · sL−1)

ĥµ(L) = H(L) − H(L − 1)

ĥµ(0) = log2 |A| :  no measurements, all things possible

Conditioning cannot increase entropy:
Monotonic decreasing: ĥµ(L) ≤ ĥµ(L − 1)

H(sL|s1 · · · sL−1) ≤ H(sL|s2 · · · sL−1) = H(sL−1|s1 · · · sL−2)

�hµ(1) = H(1)

Boundary condition: L0
0

hµ(L) ∼ slope

H(L)
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Entropy Rates for Stationary Stochastic Processes:
	
 Entropy rate ...

ĥµ = hµ

Alternate entropy rate definitions agree:

Interpretations:
	
 Uncertainty in next measurement, given past
	
 A measure of unpredictability
	
 Asymptotic slope of block entropy 

ĥµ = lim
L→∞

ĥµ(L) = lim
L→∞

H(s0|
←

s
L
) = H(s0|

←

s )
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Entropy Rate for a Markov chain: {V, T}

Assuming asymptotic state distribution:
	
 Process in statistical equilibrium
	
 Process running for a long time
	
 Forgotten it’s initial distribution

hµ = −

∑

v∈V

pv(∞)
∑

v′∈V

Tvv′ log2 Tvv′

Closed-form:

hµ = lim
L→∞

hµ(L)

= lim
L→∞

H(vL|v1 · · · vL−1)

= lim
L→∞

H(vL|vL−1)
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Entropy Rate for Markov chains ...

Examples:
	
 (1) Fair Coin:

	
 (2) Biased Coin:

	
 (3) Period-2 Process:

hµ = 1 bit per symbol

hµ = H(p) bits per symbol

hµ = 0 bits per symbol

H T

1

2

1

2

1

2

1

2

H T
p

p

1 − p

1 − p

A B
1

1
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Entropy Rate for Unifilar Hidden Markov Chain:

Internal:
Observed:

{V, T}
{T (s)

: s ∈ A}

hµ = −

∑

v∈V

pv(∞)
∑

s∈A

∑

v′∈V

T
(s)
vv′ log2 T

(s)
vv′

Closed-form for entropy rate:

Due to unifilarity:
	
 Observed sequences are (effectively) unique paths in UHMC
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Complexity Lecture 1: Processes and information (CSSS 2011); Jim Crutchfield

Entropy Rate for Unifilar Hidden Markov Chain ...
Example: Why are modems noisy?
	
 Recall previous prefix code example

H(X) = 1.75 bits

Distribution:

Codebook:

What is entropy rate (per output bit) of encoded stream?

R(C) = 1.75 bits per message

p(a) = 1
2

p(b) = 1
4

p(c) = 1
8

p(d) = 1
8

C(a) = 0
C(b) = 10
C(c) = 110
C(d) = 111
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Entropy Rate for Deterministic Hidden Markov Chain ...
Example: Why are modems noisy?

0| 1
2

1| 1
2

0| 1
2

0| 1
2

1| 1
2

1| 1
2

How often are codewords generated?

Encoding (output of channel) is a hidden Markov chain:
	
 Leaves connect to top tree node

C(d) = 111C(c) = 110

C(b) = 10

C(a) = 0
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Entropy Rate for Deterministic Hidden Markov Chain ...
Example: Why are modems noisy?

Identify tree nodes with states of a hidden Markov chain

0| 1
2

1| 1
2

0| 1
2

0| 1
2

1| 1
2

1| 1
2

A B

C

0| 1
2

1| 1
2

0| 1
2

0| 1
2

1| 1
2

1| 1
2

Start State

A

B

C

C(d) = 111C(c) = 110

C(b) = 10

C(a) = 0
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Entropy Rate for Deterministic Hidden Markov Chain ...
Example: Why are modems noisy?

Equivalent hidden Markov chain

It’s unifilar:

T =





1

2

1

2
0

1

2
0

1

2

1 0 0





pV (∞) = (pA, pB , pC) = (4

7
,

2

7
,

1

7
)

T
(0)

=





1
2 0 0
1
2 0 0
1
2 0 0



 T
(1)

=





0
1
2 0

0 0
1
2

1
2 0 0
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Entropy Rate for Deterministic Hidden Markov Chain ...
Example: Why are modems noisy?

Calculate entropy rate directly:

hµ = −

∑

v∈V

pv(∞)
∑

s∈A

∑

v′∈V

T
(s)
vv′ log2 T

(s)
vv′

= 4
7 · 1 + 2

7 · 1 + 1
7 · 1

= 1 bit

Encoding provides full utilization of binary channel.

Modem output sounds noisy!
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Entropy Rate for Deterministic Hidden Markov Chain ...
Example: Why are modems noisy?

Prefix code mapped 4-symbol, suboptimal source
	
 into a new source that uses all available capacity.

Compare:
    4-symbol source is redundant:

	
 Does not use all of 4-symbol channel.

R = log2 |A|− H(X)

= 2 − 1.75 = 0.25 bits

Modems do the same: Maximize use of capacity by sending a
	
 code stream that is as close to maximum entropy as possible.
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Entropy Rate for Nonunifilar Hidden Markov Chain:

Internal:
Observed:

{V, T}
{T (s)

: s ∈ A}

Entropy rate: No closed-form!

Upper and Lower Bounds:
H(SL|V1S1 · · ·SL−1) ≤ hµ(L) ≤ H(SL|S1 · · ·SL−1)

Unrealistic for inference: Must know about internal states.
Unrealistic for analysis: Simulate chain, do empirical estimate.

hµ �= −
�

v∈V

πv

�

s∈A

�

v�∈V

T (s)
vv� log2 T

(s)
vv�

Entropy rate? But there exists a way ... stay tuned!
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Complexity Lecture 1: Processes and information (CSSS 2011); Jim Crutchfield

Motivation:

	
 Previous: Measures of randomness of information source
	
 	
 Block entropy
	
 	
 Entropy rate

	
 End point of next lectures:
	
 	
 Measures of memory & information storage

	
 Big Picture:
	
 	
 Complementary properties of a source.
	
 	
 Need both: Measures of randomness and structure.

H(L)
hµ

Information in Processes ...
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Complexity Lecture 1: Processes and information (CSSS 2011); Jim Crutchfield

How random?

	
 Block entropy growth:          .
	
 If L is large enough, we see rate of increase of         ,
           which is the entropy rate:

H(L)
H(L)

hµ = lim
L→∞

(H(L)−H(L− 1))

Information in Processes ...
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How random ...

Fair and Biased Coins:

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

H
(L

)

L

H(L): Fair Coin
H(L):  Biased Coin, p=.7

Information in Processes ...
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How random ...

Golden Mean Process:

!
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Information in Processes ...
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How random ...

Period-16 Process:
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Information in Processes ...
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How random ...

RRXOR Process:
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Information in Processes ...
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How random ...

  How large must L be to see the intrinsic randomness     ?hµ

Information in Processes ...
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Entropy Convergence:
  Length-L entropy rate estimate:

Entropy (rate) Loss is an Information Gain:

0 L

H(1)

1

log  |A|2

0

H(1)

hµ

h  (L)µ

H∆

hµ(L) = H(L) − H(L − 1)

hµ(L) = D(Pr(sL)||Pr(sL−1))

Monotonic decreasing:   

hµ(L) = ∆H(L)

Process appears less random 
	
 as account for longer correlations    

hµ(L) ≤ hµ(L − 1)

Information in Processes ...
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Redundancy in Processes:

R = log2 |A|− hµ

Anatomy of Measurement:

{ }
}

Information
in single

measurement

Redundancy

Intrinsic
Randomness

R

hµ

Information in Processes ...
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Redundancy in Processes ...

Redundancy in words:
R(L) = H(L) − hµL

Redundancy per symbol:

0 L

H(L)H(L)

0

h  Lµ

IID
Approx

L1
0

hµ

h  (L)µ

H∆

R = lim
L→∞

D(Pr(sL)||U(sL))

r(L) = R(L)−R(L− 1) = hµ(L)− hµ

Information in Processes ...
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Predictability Gain:
1 L

H(1)
|- log  |A2

0

∆ H(L)2
Rate at which unpredictability is lost

∆2
H(L) = hµ(L) − hµ(L − 1)

∆2
H(1) = H(1) − log2 |A|

Properties:
  (1)         Curvature:

  (2)         Concavity:

  (3)                            Lth measurement significant 
∆2

H(L) ≤ 0

∆2
H(L) = H(L) − 2H(L − 1) − H(L − 2)

|∆2
H(L)| ! 1 ⇒

H(L)

H(L)

Boundary condition:

Information in Processes ...
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Predictability Gain ...

Golden Mean Process:

-0.3-

-0.25-

-0.2-

-0.15-

-0.1-

-0.05-

0-

0.05-

1- 2- 3- 4- 5- 6-

∆−2- H(L)-

L-

Second measurement is informative:
     00 restriction observed

Predictability Gain

∆2
H(2) = −0.2516 bits

Information in Processes ...
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Entropy Hierarchy:

Take derivatives:

  (1) Block entropy:

  (2) Entropy rate:

  (3) Predictability gain:

Next take integrals!

H(L)

hµ(L) = ∆H(L)

∆hµ(L) = ∆2
H(L)

Information in Processes ...
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